On Maximum Drag in Supersonic Flow

YU. D. SHMYGLEVSKY

Computing Centre of the USSR Academy
of Sciences, Moscow

The wave drag of a body in a steady supersonic gas flow equals zero if the
body does not initiate the shock waves and the flow is non-separable.
Busemann’s biplane is an example. The simple investigation, when the
detailed structure of the flow is not taken into account, allows the upper limit
of the wave drag at the given sizes of a body to be determined.

According to the momentum law we have the relation between the power
action of a gas flow on a body and the deviation angle of the jet from the
initial direction. To obtain the maximum drag it is necessary to find the best
manner of the flow reverse by using the maximum mass flow. The solution
of the problem can be based on the flow scheme on Fig. 1. The gas captured
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by the diffuser is thrown away towards the initial flow. The lines k/ and pq
are shock waves and the line mn is a dividing stream line. The interaction of
the two parts of the flow in the region gpk/ is complicated. At the beginning
of the investigation it is expedient not to take into account the flow structure
and to find the upper limit of the drag.
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The equations of gasdynamics for dimensionless variables are
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L boundary of the arbitrary region of the flow which can be multiply

connected

x,y Cartesian co-ordinates
u, v the corresponding velocity vector components

p density

p pressure
Y anentropy function
¥ anisentropic exponent
v either zero or one in two-dimensional or axisymmetrical cases
respectively.

Let the head part of the body be restricted by the inequalities
0=x=X, 05y=Y,

where X, Y are given numbers. Choose the control contour and denote the
Mach line of the uniform initial flow by sa (Fig. 1). Point a is the front point
of a sharpened profile. The attached shock waves can originate at this point.
If we have a detached shock wave then let point a be the point of intersection
of the shock wave and a stream line that separates the gas mass flowing into
the body. The remaining part of the control contour that can pass through
the gas is ah. The contour ah may be closed by the axis of symmetry and the
contour of the body.

The choice of the control contour defines the role of the head shock wave
in the drag increase. If the gas without shock waves acts on the body to get
maximum drag then the results of the solution of the variational problem
will give further conclusions about the drag limit.

Write the equation of line ah as y=/(x). According to the first equation
of (1) the resultant for X in the x direction is

(}H‘l)l‘ﬂ ; o 2y 47
= R ,)+L1 [(p+pu®)f' - puv] dx )
where w_, is the velocity of the initial flow. The last three equations of (1)
are used to convert the first term of the right-hand side of equation (2). If the
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summary mass flow through the contour sah is zero the second equation of
(1) gives

v+l

Y =0= ‘”" f 17 p(uf’ —v)dx (3)

To formulate the variational problem for the body maximum drag it is
necessary to use equations (2) and (3), the equations of gasdynamics (1), the
relations along the permissible discontinuities and the boundary conditions
of the problem. Such a complete problem is not considered.

Let us consider the problem based on equations (2) and (3) only,
inequalities

0Zf(x)EY, 0=x=X (4)

and the obvious inequality
Y=y, (5)

which expresses the increase or conservation of the entropy behind a shock
wave.

The following variational problem is formulated. We need to find the
functions f(x), u(x), v(x), Y(x) maximising X, equation (2), in accordance
with conditions (3)-(5) and the given values w_, X, Y. Let

T=X+1¥
e o J ¢S, fow,0,¢)dx
F_(__H_”(lf“’ 2) e,

2y

¢ =1"[(p+pw?cos’0)f —pw?sinfcos—ipw(sin—f'cos )]

where A is constant Lagrange multiplier, w is the velocity, 0 is the angle
between the velocity vector and the axis x.
First suppose that yy =1 . Calculate the first variation

0T = (Fyv_qbf‘)a 5."a_¢a ‘s'\-a+(¢f’)h 6yh

+Jm[((b;—%¢I.)5f+¢w6w+q5959:|dx (6)

where suffixes f, /', w, 0 indicate the partial derivatives,
(Fy =)0 = Vo [F —(p+pw? cos? 0+ Apw cos 0),]
(¢ 00 = yi(p+ pw? cos? 0+ 2pwcos 0),
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Double suftix ah indicates values at point @ when they tend to it from
point A.
All the other values in equation (6) are

d : d
bregxtr= ‘;ﬁ_dr Lf* (p+pw? cos® 0+ ipwcos 0)]
_ I'r [90( 4 s '
.= i 2w(x+ 1+ yw?)(sin@—f ‘cos ) cos 0

+ [+ 1= (= DwIwf" + A+ (1 —w?)(sin 0—f" cos 0)}
o= —f" p[w?(cos 20+ sin 20) + iw(cos O+ sin 0)]

The necessary condition of maximum X is 7<0 at the permissible
variations. Equation (6) shows that this condition is satisfied when

=0, y=Y @)
and qb:‘t ; 0! (qbf’)h ;0 (8)
(Fy'—¢,),=0 9
d
b= 9r =0 6.=0, $=0 (0=x=X) (10)

Inequalities (8) give dT<0 because the permissible variations satisfy the
condition dx,=0, dy, <0, when equalities (7) are satisfied.

Functions f(x), w(x), 0(x) at 0=x= X and the value of y, are determined
by equation (10) and equality (9). The value of 4 is determined by equality (3).
The conditions (8) must then be checked.

The system of equalities

(f) =0, w=1, 0=n

gives one partial solution in two-dimensional and axisymmetrical cases. In

this case the gas is thrown away towards the initial flow with sonic velocity.

As a matter of fact this flow can not be received at the finite length of the body.
In a two-dimensional case the value ¢, and the first equation of (10) gives

p+ pw? cos? 04 Apw cos 0 = const

This equality together with the second and the third equations of (10) shows
that in the two-dimensional case, values of f*, w and 0 are constant.
The equalities

2 1\ 1/2
f(x)=Y, 0=arccos|:-((zw—k-1‘;f:; . 1)) :I (11)
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give one more partial solution. This solution stipulates capture of the maxi-
mum mass flow by the diffuser and throwing the gas through the contour that
is parallel to the velocity vector of the initial flow.

In the axisymmetrical case the variety of the solutions is wider.

Let the entropy increase be permissible. Denote Yy =y, where 0=y, = 1.
In the equality (6) for the first variation there appears a new term

Xn S
ST, = J PLALTN
Xa !//*

Substitute in this term the functions found at =y . The permissible varia-
tion i, satisfies the condition dyr, <0. Therefore the condition 670 is
satisfied at

$=20 (0=x=X) (12)

After solving equations (3), (9), (10) we must check that conditions (8)
and (12) are satisfied. The satisfaction of condition (12) provides the satis-
faction of the first condition of (8).

Examples of calculations were computed for y=1-4 for two-dimensional
and axisymmetrical cases. For every supersonic value w_, and for every value
L= XY conditions (8) and (12) are satisfied. Therefore at least at y =1-4 the
maximum drag is provided when the gas did not pass the shock wave.
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- The results of the calculations are shown on Fig. 2 where the drag co-
efficient ¢, and the parameter © are

¢, =2XjwlY, O =arctanf’

The drag coefficient to the accuracy of Fig. 2 for bodies of revolution does
not differ from the two-dimensional case.

We note, for example, that for Mach number of the initial flow of 4, the
maximum drag of a body of revolution is twice as much as the wave drag of a
disc in the axisymmetrical case.





